
JANUARY/FEBRUARY 2005 Copublished by the IEEE CS and the AIP 1521-9615/05/$20.00 © 2005 IEEE 79

Editors: Paul F. Dubois, paul@pfdubois.com

George K. Thiruvathukal, gkt@cs.luc.edu

PROGRAMMINGS C I E N T I F I C P R O G R A M M I N G

might have to know how to link to dozens of different li-
braries or other third-party software. It might even have to
build some of those libraries from scratch, not to mention
build itself (and the libraries) in many different versions for
various operating systems and hardware platforms.

A next-generation software build tool called SCons can
greatly simplify the headaches involved in building compli-
cated software projects. I’ll demonstrate it by building a
sample project that involves source code spread across mul-
tiple directories. We’ll also build two versions of an exter-
nal software package to link against: a debug version and an
optimized version.

SCons Basics
Before we get to the sample project, let’s explore SCons.
(More detailed information about it, including downloads,
installation instructions, and documentation, is available at
www.scons.org.)

The most distinctive thing about SCons is that its con-
figuration files are actually Python scripts; to specify de-
pendencies, we call various SCons functions using normal
Python syntax, rather than a special-purpose language. The
top-level configuration file—the SCons equivalent of the
Makefile at the top of a source tree—is called SConstruct.

Consider the following example, which builds a program
called myprog:

Program(target = ‘myprog’,

source = [‘file1.c’, ‘file2.f’,

‘file3.y’],

CC = ‘gcc’,

CCFLAGS = [‘-g’],

CPPDEFINES = [‘DEBUG’],

CPPPATH = [‘include’],

FORTRAN = [‘f90’],

FORTRANFLAGS = [‘-X’],

LIBS = [‘m’, ‘foo’],

LIBPATH = [‘libs’])

This example demonstrates many of the SCons features
we’ll use in the more complicated example. Specifically, line
by line:

• We leave off any program suffix on the target file name.
When compiling on Windows, SCons will automatically
append the .exe suffix for us and build myprog.exe.

• The source file list can contain a mixture of languages—
in this case C, Fortran, and Yacc. By default, SCons will
invoke the right compilers with the right options to build
each type of source file.

• The CC variable tells SCons what C compiler to use. If we
had left off this definition, SCons would have tried to pick
a reasonable default compiler based on what’s installed on
our system.

• The CCFLAGS variable contains specific compilation op-
tions—in this case, the –g option that includes debug
information.

• The CPPDEFINES variable tells SCons what variables
should be defined on the command line. Note that we
don’t do this by explicitly specifying –D options by hand in
CCFLAGS. This allows SCons to construct the right com-
mand line for different types of compilers—for example,
-DDEBUG on Linux systems, /DDEBUG on Windows.

• The CPPPATH definition tells SCons where to look for
header (.h) files. Notice that we don’t specify –I options on
the command line; SCons will create them for us.

• The FORTRAN variable tells SCons which Fortran com-
piler to use. Again, if we had left this blank, SCons would
have tried to pick a reasonable default based on what’s in-
stalled on the system. SCons has very flexible Fortran sup-
port, including the ability to independently configure
compilers and options for Fortran 77, 90, and 95.

• The FORTRANFLAGS variable specifies Fortran compila-
tion options.

BUILDING SOFTWARE WITH SCONS

By Steven Knight

S OFTWARE CREATION IS A COMPLICATED

PROCEDURE. THE PROLIFERATION OF

COMMERCIAL AND OPEN-SOURCE PACKAGES

MEANS THAT A TYPICAL SOFTWARE PACKAGE

80 COMPUTING IN SCIENCE & ENGINEERING

• The LIBS variable is a list of libraries to be linked with
this program. Note that we specify only the base name of
the library, without a “lib” prefix or “.a” suffix and
without a “-l” flag. This allows SCons to add the right
command-line options to link with the specified libraries
on any operating system.

• The LIBPATH variable tells SCons where to find the li-
braries. Again, we don’t specify a –L prefix, but let
SCons add the appropriate option for our operating sys-
tem and linker.

Notice that we specified all these variables as Python key-
word arguments to the Program() function. (In SCons
terms, the Program() function is called a builder.) If we
wanted to build multiple programs, it would be tedious to re-
peat all those variables every time we call Program(). SCons
lets us collect them into a construction environment through
which we can then call Program()multiple times to build
multiple programs with the same compilers and options:

env = Environment(CC = ‘gcc’,

CCFLAGS = [‘-g’],

CPPDEFINES = [‘DEBUG’],

CPPPATH = [‘include’],

FORTRAN = [‘f90’],

FORTRANFLAGS = [‘-X’],

LIBS = [‘m’, ‘foo’],

LIBPATH = [‘libs’])

env.Program(‘myprog’, [‘file1.c’, ‘file2.f’,

‘file3.y’])

env.Program(‘prog2’, [‘file4.c’, ‘file5.c’,

‘file6.c’])

We can create multiple construction environments, make
copies of them, and tailor them for different purposes.

Building in Multiple Directories
I’ll begin explaining our more complicated example by
demonstrating how to build software that’s spread across
multiple directories.

Within any SCons configuration file, we call the SCon-

script() function to specify one or more subsidiary con-
figuration files that SCons should read. By convention, these
files are named SConscript (hence the name of the func-
tion), although we can name them anything we like. All
SCons configuration files are generically referred to as SCon-
script files, regardless of the actual file name.

The typical configuration is to place one subsidiary SCon-
script file in each subdirectory, allowing us to keep each
build configuration file next to the source-code files it’s sup-
posed to build. This is also the way large projects typically
set up their Makefiles, but unlike Make, SCons doesn’t re-
invoke itself recursively in each subdirectory. Instead, it
reads up all the configuration files into one global view of
the dependencies between the various target and source files,
and then builds the requested targets—along with their de-
pendencies—as efficiently as possible.

Another way in which SCons differs from Make is that the
variables defined in each SConscript file aren’t automatically
shared between files. This is to avoid the Make phenomenon
of changes in one configuration file having unintended side
effects in other configuration files. Instead, SCons requires
us to explicitly Export() variables from configuration files
so that other configuration files can Import() them.

We’ll build an example that consists of source code in two
subdirectories. The libx subdirectory contains the source
of an internal library that we want to build and link with, and
the progy subdirectory contains the source of the program
we’re building. To keep things simple, each subdirectory
contains three numbered C source files, although recall from
earlier that we can build multiple languages just by listing
the source files. We’ll have one top-level SConstruct file
and one SConscript file in each of the two subdirectories,
so the initial layout of our source tree looks like Figure 1.

The top-level SConstruct file for Figure 1 might look like
this:

Top-level SConstruct file that calls

subsidiary SConscript files to build

a library and a program.

env = Environment(CC = ‘gcc’,

FORTRAN = ‘g77’)

Export(‘env’)

SConscript(‘libx/SConscript’)

SConscript(‘progy/SConscript’)

This SConstruct file sets up a base construction environ-
ment containing the compilers we want to use for all com-
pilations throughout the source tree. Here we’ve set both C

S C I E N T I F I C P R O G R A M M I N G

src/
 SConstruct
 libx/
 SConscript
 file1.c
 file2.c
 file3.c
 progy/
 SConscript
 file4.c
 file5.c
 file6.c

Figure 1. Source tree. In this initial layout of a multidirectory
SCons example, the SCons configuration files are in bold.

JANUARY/FEBRUARY 2005 81

and Fortran compilers; we can also set any other construc-
tion variables we want to use explicitly.

The variable name env to which this construction envi-
ronment is assigned is then exported to the subsidiary con-
figuration files by calling the Export() function. The env
construction environment is now available for import by the
subsidiary configuration files libx/SConscript and
progy/SConscript, which we call by using the SCon-
script() function.

Our library subdirectory contains three source files. We
want one of them, file2.c, to be built with a –DXYZZY com-
mand-line option:

Subsidiary SConscript file for

building libx.

Import(‘env’)

file2_o = env.Object(‘file2.c’,

CPPDEFINES = [‘XYZZY’])

env.StaticLibrary(‘x’, [‘file1.c’, file2_o,

‘file3.c’])

The first Import() line imports the env construction
environment, which is then used to build the object files and
the library. The second line shows an explicit build of an
object file, which is necessary here because we want this ob-
ject file built with the desired DXYZZY option. Notice that
we set this using the platform-independent CPPDEFINES
variable, not CCFLAGS, so that SCons could construct the
right command-line options when run on Windows. The
second line also saves the return value from the env.
Object() builder call. The returned value, which we save
as the file2_o variable, is a list containing a node, an inter-
nal SCons object that represents the file that will be built
from file2.c. Notice that we use this node as source for the
env.StaticLibrary() call on the third line. The ad-
vantage, again, is that our build configuration is now plat-
form-independent: SCons will remember whether the built
object file is actually called file2.o (on Linux or Unix) or
file2.obj (on Windows).

Notice also that all file names are interpreted relative to
the directory in which the SConscript file lives, even
though SCons will execute the commands from the top-level
directory in which the SConstruct file lives.

In our other subdirectory, we want to compile the three
source files into a program that we link with the library from
the first subdirectory. We want to build all three source files
with –DFOO and –DBAR command-line options, but we also
want to build one of the three files with the –Wall option.

(Because this is a compiler-specific option, it makes our con-
figuration nonportable to compilers other than gcc.) The
SConscript file looks like this:

Subsidiary SConscript file for

building progy.

Import(‘env’)

env = env.Copy(CPPDEFINES = [‘FOO’, ‘BAR’],

LIBS = [‘x’],

LIBPATH = [‘../libx’])

file5_o = env.Object(‘file5.c’,

CCFLAGS = ‘-Wall’)

env.Program(‘progy’, [‘file4.c’, file5_o,

‘file6.c’])

Because we want to build all the object files with the same
options, we make a copy of the imported construction envi-
ronment by calling env.Copy() and specifying the vari-
ables we want to use in this file. We can still override spe-
cific variables when calling a builder, like we do here when
we set CCFLAGS when calling env.Object() to compile
the object file for file5.c. We then use the same technique
of using the returned value from the env.Object() call as
an input source file when we call env.Program(). We link
against the library in the first subdirectory by setting the
LIBS and LIBPATH variables in the construction environ-
ment. We could have set these directly when calling
env.Program(), but it was more convenient to do so when
copying the construction environment, which would let us
link other programs in this directory with the same library.
We only specify the base name of the library we built: we
don’t need to specify the lib prefix or the .a suffix.

When we build this example by calling scons, the object
files, library, and program are all built in their respective di-
rectories. Figure 2 shows the resulting tree.

src/
 SConstruct
 libx/
 SConscript
 file1.c
 file2.c
 file3.c
 file1.o
 file2.o
 file3.o
 libx.a
 progy/
 SConscript
 file4.c
 file5.c
 file6.c
 file4.c
 file5.c
 file6.c
 progy

Figure 2. Building an example. The SCons configuration files
are still in bold face, but the built files are in italics.

82 COMPUTING IN SCIENCE & ENGINEERING

Building Variants
Another common complicating factor in modern software
builds is the need to build multiple variants of the software.
It might be necessary, for example, to build a debug version
of a program during normal development, and then build an
optimized version of the same code base when building the
software for official release.

SCons makes this easy by providing access to command-
line arguments that can be consulted to change the way in
which we set variables in our construction environment.
Suppose we want to let a user build our example project with
a command-line argument of DEBUG=1 to specify that a de-

bug version should be built and OPT=1 to specify that an op-
timized version should built. We can do this by using the
ARGUMENTS dictionary, which SCons provides to hold the
values of any command-line arguments like these. Our
SConstruct file now looks like this:

Top-level SConstruct file that calls

subsidiary SConscript files to build a

library and a program, checking for

command-line settings of DEBUG= and OPT=.

env = Environment(CC = ‘gcc’

FORTRAN = ‘g77’)

if int(ARGUMENTS.get(‘DEBUG’, 0)):

env.Append(CCFLAGS = ‘-g’,

CPPDEFINES = [‘DEBUG’])

if int(ARGUMENTS.get(‘OPT’, 0)):

env.Append(CCFLAGS = ‘-O’)

Export(‘env’)

SConscript(‘libx/SConscript’)

SConscript(‘progy/SConscript’)

We used some Python code here: the ARGUMENTS.get()
method fetches the specified value for the argument, DEBUG
or OPT. If a value isn’t specified on the command line, the
ARGUMENTS dictionary won’t have a value for that keyword,
so the second argument to the ARGUMENTS.get() method

is returned as the default value. In our example, both DEBUG
and OPT have default values of 0. We then wrap the calls to
ARGUMENTS.get() in the Python int() function, which
returns the integer value for the string. (Without the call to
int(), a string value of “0” on the command line would ac-
tually evaluate true.)

We must now modify our subsidiary SConscript slightly
to accommodate the possibility that the top-level SCon-
struct file could set the CCFLAGS or CPPDEFINES construc-
tion variables. Recall that we built the libx/file2.c file
with a CPPDEFINES value of XYZZY and the progy/
file5.c file with a CCFLAGS value of -Wall. If we didn’t
make any changes, those values would overwrite the –g, –O,
or DEBUG values set by the top-level SConstruct file. We
can accommodate this by modifying the libx/SCon-
script file to this:

Subsidiary SConscript file for building

“libx” without overriding an already-set

CPPDEFINES value.

Import(‘env’)

env2 = env.Copy()

env2.Append(CPPDEFINES = [‘XYZZY’])

file2_o = env2.Object(‘file2.c’)

env.StaticLibrary(‘x’, [‘file1.c’, file2_o,

‘file3.c’])

The new idiom here is to call the env.Append() method
to append the CPPDEFINES value to the value (if any) set by
the top-level SConstruct file. Similarly, we modify the
progy/SConscript file as follows:

Subsidiary SConscript file for building

“progy” without overriding already-set

CPPDEFINES or CCFLAGS values.

Import(“env”)

env = env.Copy(LIBS = [‘x’],

LIBPATH = [‘../libx’])

env.Append(CPPDEFINES=[‘FOO’, ‘BAR’])

file5_o = env.Object(‘file5.c’,

CCFLAGS = ‘$CCFLAGS -Wall’)

env.Program(‘progy’, [‘file4.c’, file5_o,

‘file6.c’])

Notice here that in addition to an env.Append() call for
the CPPDEFINES values, we’ve had SCons expand the exist-
ing $CCFLAGS value in the new CCFLAGS value for com-
piling the file5.c file.

S C I E N T I F I C P R O G R A M M I N G

Another common complicating factor

in modern software builds is the need to

build multiple variants of the software.

JANUARY/FEBRUARY 2005 83

One subtle way in which this SCons configuration is an
improvement over similar Make-based schemes is that the
resulting object files and program not only depend on the
source files, but also on the command-line options used to
build them. This means that the first time we specify DE-
BUG=1 on the command line, SCons will realize that none
of the already built object files and programs will have been
built that way, so it’ll rebuild them all for us, correctly, with-
out having to explicitly remove them first. This avoids a
whole class of problems in Make-based builds in which ob-
ject files built with different options can get linked together,
causing maddeningly obscure bugs that are extremely diffi-
cult and time-consuming to track down.

Building Multiple Variants Side-by-Side
An alternative approach to building software in variant
forms is to build multiple variants in side-by-side directo-
ries. This might be useful if we want to be able to compare
the behavior of our debug and optimized versions (perhaps
enabling debugging has an unintended side effect in the pro-
gram), or if we want to build a program for multiple plat-
forms in our network using the same NFS-mounted source
tree everywhere.

SCons makes this very easy through a build_dir ar-
gument to the SConscript() function. This argument
tells SCons where the target files defined by the builder
calls in the specified SConscript file should be placed. The
build_dir argument is usually accompanied by a du-
plicate=0 argument that tells SCons to not duplicate the
source files in the specified build directory as well. (By de-
fault, SCons would duplicate these source files to guaran-
tee a correct build in unusual end cases involving gener-
ated header files and the use of the C/C++ #include
directive with file names in double quotes rather than an-
gle brackets.)

In our example, the top-level SConscript file will use these
arguments to specify that the source files in our two source
directories should each be built in side-by-side debug and
optimized versions underneath subdirectories called debug
and opt, respectively:

Top-level SConstruct file that calls

subsidiary SConscript files to build a

library and a program, building side-by-

side variants. The variant in the debug/

subdirectory is built with –g –DDEBUG,

and the variant in the opt/ subdirectory

is built with –O.

env = Environment(CC = ‘gcc’,

FORTRAN = ‘g77’,

CCFLAGS = ‘-O’)

Export(‘env’)

SConscript(‘libx/SConscript’,

build_dir=’opt/libx’,

duplicate=0)

SConscript(‘progy/SConscript’,

build_dir=’opt/progy’,

duplicate=0)

env = env.Copy(CCFLAGS = ‘-g’,

CPPDEFINES=[‘DEBUG’])

Export(‘env’)

SConscript(‘libx/SConscript’,

build_dir=’debug/libx’,

duplicate=0)

SConscript(‘progy/SConscript’,

build_dir=’debug/progy’,

duplicate=0)

/
 SConstruct
 libx/
 SConscript
 file1.c
 file2.c
 file3.c
 progy/
 SConscript
 file4.c
 file5.c
 file6.c
 debug/
 libx/
 file1.o
 file2.o
 file3.o
 libx.a
 progy/
 file4.c
 file5.c
 file6.c
 progy
 opt/
 libx/
 file1.o
 file2.o
 file3.o
 libx.a
 progy/
 file4.c
 file5.c
 file6.c
 progy

Figure 3. Mirrored build trees for side-by-side debug and
optimized versions of the same program. The SCons
configuration files are still in bold face, and built files and
directories are in italics, including the debug and opt
subdirectories containing the different built versions.

84 COMPUTING IN SCIENCE & ENGINEERING

We’ve accomplished this by assigning different construction
environments to the env variable. The first copy of env builds
all the files with a –DDEBUG option, and the second builds all
the source files with a –DOPT option. By exporting different
(but related) construction environments as env each time we
call the SConscript() function, the subsidiary SConscript
files that we “call” in this way don’t have to have any special
knowledge about whether their source files were built for a de-
bug or optimized build. They simply Import(“env”)as they
normally would, and SCons takes care of the rest.

When we build our example using this technique, SCons
creates mirrored build trees under the debug/ and opt/
subdirectories, each in turn containing a libx/ and progy/
subdirectory containing the object files and library or pro-
gram built with the appropriate debug or optimization flags
(see Figure 3).

Building a Third-Party Library
Typically, a third-party library is prepared to be built with
Make. Posix systems, including Linux and Unix systems, also
typically have a configuration script (usually, but not always,
called configure) that must be run to tailor the build to a
particular system.

The simplest way to do this is to have SCons call Make to
build the library. Even if SCons configuration files are eas-
ier to read than Make files, there’s little sense in rewriting all
the work the library’s authors put into making their software
build.

The simplest way to have SCons call Make is to use the
Command() builder. The Command() builder takes target file
and source file arguments, like the other builders we’ve already
seen, but it also takes as a third argument an explicit command
or list of commands executed to build the target file.

S C I E N T I F I C P R O G R A M M I N G

Chez Thiruvathukal
Namespace Thiruvathukal

W hat to name our new little
variable? Since he was

born the week before the election, I
found myself referring to him during
diaper changes as “The Gentleman
from Illinois.” It fit: he’s already well-
known for loud filibusters. Still, he
did need a proper name.

My friends suggested GTK 2.0,
G++, G#, and *G. They say that once
you have a child, you get an entire
collection of new friends. (Apparently
my friends are dyslexic, too, mistaking
my initials for the Gnome Tool Kit).

Anyway, I wish to assure my readers
that the boy has not been named af-
ter a programming language, library,
or some linear combination thereof.
Instead we gave him an Indian name,
Rohan, which means “ascending”
(www.babynamesindia.com/r.html)
or “sandalwood” (www.babynamesworld.com/profile.
php?seostats=1&name=Rohan).

Needless to say, my time these past several weeks has
been dedicated to new-fatherhood tasks. In this install-
ment, the kitchen is not as well stocked as usual, so I’ll be
preparing light fare using some rarely used ingredients
that have been sitting in the refrigerator and spice rack for
some time.

Fortran
Occasionally, I reminisce on the glory days of program-

ming. You know, the days when programmers were real
programmers (ok, cowboys/cowgirls). I was an undergrad-

uate intern at Argonne National
Laboratory in the physics division. I
still vividly recall working with a sci-
entist who suggested I add some
statistical and reporting features to
a Fortran code that numbered sev-
eral hundred thousand lines and,
when printed, amounted to ap-
proximately one standard ream of
paper. To this day, thinking of this
code reminds me of how it all got
started. I wondered what it would
look like if it had been written in C
with its proper support for data
structures and more modular con-
structs. At the time, OOP was more
or less making its debut, but those
using Fortran were still trying to
enter the world of data abstraction
and procedural programming.

One of my readers suggested I
include a few words about modern

Fortran implementations, such as Fortran 95, in my column.
There are several choices out there: visit dmoz.org (an inter-
esting project in its own right, it supports open directories
on the Web, www.dmoz.org/Computers/Programming/
Languages/Fortran/Compilers/). The g95 project (www.
g95.org) is an open-source Fortran 95 implementation that
supports most major platforms (Windows via Cygwin,
Linux, and Mac OS X). Intel also provides a free Fortran im-
plementation (www.intel.com/software/products/compilers/
flin/). IBM and the Portland Group have some well-estab-
lished commercial offerings. For those seeking a 64-bit offer-

JANUARY/FEBRUARY 2005 85

As a specific example, suppose we want to build a recent
stable version of the Atlas library from its downloadable
archive file. Unpacking the archive shows us that it unpacks
itself into an ATLAS/ subdirectory. According to the IN-
STALL.txt file contained in the Atlas distribution, we need
to execute the commands “make config” and “make in-
stall arch=arch” to build Atlas. The file also tells us that
we can pass arguments to the “make config” command that
specify our C and Fortran compilers. From having built the
library before, we see that the full build will create five li-
braries in the lib/arch/ subdirectory. Putting this all to-
gether, our SConscript file looks like this:

Subsidiary SConscript file for building

ATLAS from its downloadable .tar.gz

archive file.

ATLASVERSION = ARGUMENTS.get(ATLASVERSION,

‘3.6.0’)

ATLASARCH = ARGUMENTS.get(ATLASARCH,

‘Linux_PIIISSE1’)

env = Environment(CC = ‘gcc’,

FORTRAN = ‘g77’,

ATLASVERSION = ATLASVERSION,

ATLASARCH = ATLASARCH,

ATLAS_LIB_DIR = ‘ATLAS/lib/$ARCH’)

ATLAS_libraries = Split(“““

$ATLAS_LIB_DIR/libatlas.a

$ATLAS_LIB_DIR/libcblas.a

$ATLAS_LIB_DIR/libf77blas.a

$ATLAS_LIB_DIR/liblapack.a

ing, there’s Open64 Fortran, which is derived from the SGI
commercial Fortran implementation.

It’s refreshing to see that Fortran, like Elvis, lives. Digging a
bit deeper, I decided to check for the availability of Cobol im-
plementations. SourceForge has two projects: Tiny Cobol
(http://tiny-cobol.sourceforge.net) and Open Cobol (http://
open-cobol.sourceforge.net). Although preliminary, these
are key opportunities for supercharging Fortran applications
with the robust reporting capabilities found in Cobol.

Major Java Update
The Java programming language has been refreshed to ver-
sion 5.0 (also known as 1.5.0). I continue to be amused at
the software industry’s obsession with version numbers. Mi-
crosoft was really onto something when it moved to ver-
sion numbering based on year/edition.

In any event, don’t let the version numbering confuse you.
This Java update is what many of us have been waiting for,
but it doesn’t completely address what those of us in high-
performance and scientific computing had been hoping for.

The major new language features include generics, the
original term used to address parameterized class types
(such as List<int> or Map<string, Employee>).
Parameterized classes are highly useful and take much of
the pain out of object-oriented programming.

Some other new features (imported from Microsoft C#)
are boxing and autoboxing, which allow primitive types
(int, float, double) to be assigned to and from object
types. In the past, Java programmers had to use so-called
wrapper classes to assign integers to objects ([Object x
= new Integer(5);]) or to go in the reverse direction
(int [xValue = x.intValue()]). Needless to say,
the marriage between primitive and object types in Java
was one of inconvenience—until now. The same code can
now be written as [Object x = 5] and [int xValue

= (int) x].
Python (which by now everyone knows is one of my fa-

vorite languages after Java) provides support for natural it-
eration. You can write code like this to examine all elements
of a list:

myList = [1, 2, 3]:

for item in myList:

print item

Java now provides an enhanced for loop, which al-
lows you to do something similar. It’s still much more
concise in Python, but here’s the equivalent code:

ArrayList<Integer> myList = new

ArrayList<Integer>();

myList.add(1);

myList.add(2);

myList.add(3);

for (Integer item : myList)

System.out.println(item);

Although such new features make programming in Java
much more pleasant, there are still some things missing,
such as support for true arrays (notably, rectangular ar-
rays). Hopefully, Sun will wake up and smell the Java. We
need proper arrays, operators, and support for complex
primitives to write scientific and engineering codes in Java.

Nevertheless, these new features are a step in the right
direction. Similar to American politics, these changes are
more likely to affect the Java base than the specialized uses
our community needs. But the changes will have impact.
Perhaps 18 years from now, similar to Fortran 77, we’ll be
working with Java 2022.

86 COMPUTING IN SCIENCE & ENGINEERING

$ATLAS_LIB_DIR/libtstatlas.a

“““)

env.Command(ATLAS_libraries,

‘atlas${ATLASVERSION}.tar.gz’,

[

‘$TAR zxf $SOURCE’,

‘cd ATLAS && ‘ + \

‘make config CC=$CC F77=$FORTRAN’,

‘cd ATLAS && ‘ + \

‘make install arch=$ATLASARCH’,

])

The first section uses the ARGUMENTS.get() method
to let the user specify on the command line an explicit ver-
sion of the Atlas library to build, or an explicit architecture
to build for. The default values will build version 3.6.0
(the latest stable release) for Linux (on an older Pentium
III system), but the user could build development version
3.7.8 by specifying ATLASVERSION on the command line
as follows:

$ scons ATLASVERSION=3.7.8

The second section creates the construction environment
that we’ll use to build Atlas. We’ve chosen to specify explic-
itly our C and Fortran compilers, although we could have
used the default compilers that SCons would pick for us.
We’ve set construction variables called ATLASVERSION and
ATLASARCH to the values of the same-named Python vari-
ables we let the user set. We also created an
ATLAS_LIB_DIR construction variable to define the path
where Atlas builds its libraries.

The third section defines the five libraries that we ex-
pect will be created by this build of Atlas. We tell SCons
to use the specified $ATLAS_LIB_DIR variable, which
when expanded indicates that the libraries will be found
(by default) in the ATLAS/lib/Linux_PIIISSE1 subdi-
rectory. ($ATLAS_LIB_DIR doesn’t actually get expanded
until SCons determines that it needs to build the libraries.)
We could have hard-coded this as a Python list, but rather
than quote each library name individually, we used the
SCons-supplied Split() function to split the multiline
string within the Python triple-quote syntax into the sep-
arate library names.

The last section is where we call the Command() builder
to tell SCons how to make the libraries. The ATLAS_li-

braries Python variable, containing the list of libraries to
be built, is the target (the first argument), and the source (the
second argument) is the current Atlas distribution file, which
we expect to find in the same directory as the SConscript
file. If it were actually located elsewhere, we could simply
specify a relative pathname (../downloads/atlas$
{VERSION}.tar.gz) or absolute pathname (/usr/
local/downloads/atlas${VERSION}.tar.gz) to the
location.

The first command unpacks the archive; SCons sets the
$TAR variable to an appropriate utility, and the $SOURCE
variable refers to the source archive, so we don’t have to
specify the location more than once. The second and third
commands execute the appropriate commands to build and
install Atlas. Because the archive unpacks into an ATLAS sub-
directory, we must add an explicit “cd ATLAS” to the be-
ginning of each command so that the make commands are
executed from within the proper, unpacked directory.

If we added the above code directly to our SConstruct file,
we’d see the source tree in Figure 4, which contains the At-
las archive and the build subdirectory abridged to show just
the files we’re interested in.

This seems like a lot of work: we had to unpack the li-
brary to examine its build and installation instructions, fig-
ure out what directory it unpacks into, and then examine an
already built copy to figure out what library files it creates.
But the advantage of taking the time to gather this infor-
mation and put it into an SConscript file is that it will now
become much simpler to keep our software in sync with fu-
ture releases and other versions of Atlas. All we’ll need to
do is download the next release and change the version
number in our SConscript file from 3.6.0 to 3.7.8, for
example. The only time we would need to look any deeper
would be if the Atlas developers substantially changed their
build and installation procedures, or if a new version of At-
las added another built library.

Linking with the Built Library
Having built Atlas, we presumably want to use it in the rest
of our software. Recall that we do this by setting two SCons
construction variables: LIBS tells SCons which libraries to
link the software with, and LIBPATH tells SCons where to
find the libraries. It’s most convenient to add these to the
same construction environment in which we set the
ATLAS_LIB_DIR construction variable:

env = Environment(CC = ‘gcc’,

FORTRAN = ‘g77’,

S C I E N T I F I C P R O G R A M M I N G

JANUARY/FEBRUARY 2005 87

ARCH = ‘Linux_PIIISSE1’,

ATLAS_LIB_DIR = ‘ATLAS/lib/$ARCH’,

LIBPATH = [“$ATLAS_LIB_DIR”],

LIBS = [‘atlas’, ‘lapack’])

Believe it or not, that’s all we need to do. SCons will now
add the appropriate options when linking any program spec-
ified by the env.Program() builder called through this
construction environment.

Advanced Usage:
Avoiding Build Command Duplication
If we have several third-party packages we want to build with
the same set of commands, it would be tedious and error-
prone to repeat those commands for each and every pack-
age. Recall that SCons helps avoid duplication in our build
configuration by letting us collect variables into a construc-
tion environment. Similarly, SCons also lets us define our
own builder object to collect common lists of commands for
reuse in building multiple output files without duplication.

Suppose, for example, that we have many packages to con-
figure using the same “configure-make-make install”
list of commands (the traditional package-building recipe
for packages generated using the GNU Autoconf utility).
We could do this in SCons as follows:

MakeInstallBuilder = Builder(

action = [

‘$TAR xf $SOURCE’,

‘cd ${TARGET.dir} && ‘ + \

‘./configure –prefix=$PREFIX’,

‘cd ${TARGET.dir} && make’,

‘cd ${TARGET.dir} && make install’,

])

env = Environment()

env[‘BUILDERS’][‘MakeInstall’] = \

MakeInstallBuilder

env.MakeInstall(‘/usr/local/bin/foo’,

‘foo-1.0.tar.gz’,

PREFIX=’/usr/local’)

env.MakeInstall(‘/usr/local/bin/bar’,

‘bar-0.9.tar.gz’,

PREFIX=’${TARGET.dir.dir}’)

The first section defines the Builder object, which we
assign to a Python variable called MakeInstallBuilder.

The action keyword argument is required because it tells
SCons what commands to invoke when building target files
with this builder. The $-variables in the command lines do
not get expanded when we define the builder; rather, they
get expanded when the builder is invoked to actually build
any necessary target files. This lets us pass a value to the
—prefix= argument to be specified later, when we actu-
ally call the builder.

The second section shows us the attachment of the
builder to a construction environment; now we can call it to
arrange for target files to be built. We can specify the name
we want to use to call the builder as the value in the
‘BUILDERS’ dictionary to which we assign the builder—in
this case, the name is MakeInstall.

In the last section, we call the builder twice to build and in-
stall two different packages. In the first call, we explicitly set
the PREFIX value to /usr/local, reflecting where we want
the package installed. Although it’s clear where we want the
installation, it has the slight disadvantage of requiring the
prefix to be changed in two places if we ever want to do that.
In the second call, we generalized the PREFIX value by us-
ing the dir attribute of the SCons TARGET variable. This
specifies that we want to insert the directory under which the
$TARGET file can be found; by using it twice, we essentially
“back up” to the /usr/local directory without having to
specify it by hand. This is a little less obvious, but it means

src/
 SConstruct
 atlas3.6.0.tar.gz
 ATLAS
 lib/
 Linux PIIISE1
 libatlas.a
 libcblas.a
 libf77blas.a
 liblapack.a
 libtstatlas.a
 libx/
 SConscript
 file1.c
 file2.c
 file3.c
 file1.o
 file2.o
 file3.o
 libx.a
 progy/
 SConscript
 file4.c
 file5.c
 file6.c
 file4.c
 file5.c
 file6.c
 progy

Figure 4. Source tree after building the Atlas library from code
added to the SConstruct file. The ATLAS subdirectory has
been created by unpacking the atlas3.6.0.tar.gz file;
the libraries were created by having SCons execute the
necessary build commands.

that we’re specifying the PREFIX in only one place.

T his article, of course, only scratches the surface of what
SCons can do. Additional key SCons features not cov-

ered here include support for Java and SWIG, for building
TeX and LaTex documents, and building project and solution
files for Visual Studio versions 6 and 7 (.NET). SCons also
has integrated support for multiplatform configuration (sim-
ilar to the GNU Autoconf utility), can build multiple targets
in parallel using a –j command-line option, and can build
software from central repositories of source or target files.

SCons is in active development by a team of volunteer de-
velopers led by me. New releases appear approximately
quarterly, and are developed using a methodology that
makes extensive use of regression tests to ensure that new
releases don’t break existing functionality.

Upcoming areas of work on SCons include integrated
support for distributed builds and remote execution of build
commands, support for Visual Studio version 8, and scaling
the performance and memory usage of SCons to extremely
large projects.

Steven Knight has worked as a software engineer, executive, and con-

sultant for more than 20 years. In 2000, his design for a next-generation

build tool won the Software Carpentry contest and served as the basis

for the SCons Project, which he founded the following year. He is cur-

rently making use and enhancement of SCons to simplify software builds

the focus of his career. Contact him at knight@scons.org.

Ensure that your networks operate safely
and provide critical services even in the face of

attacks. Develop lasting security solutions, with this
peer-reviewed publication.

Top security professionals in the field share infor-
mation you can rely on:

• Wireless Security
• Securing the Enterprise
• Designing for Security

Infrastructure Security
• Privacy Issues
• Legal Issues
• Cybercrime
• Digital Rights Management and more!

www.computer.org/security/

BE SECURE.

DON’T
RUN

THE RISK.
BE SECURE.

DON’T
RUN

THE RISK.

S C I E N T I F I C P R O G R A M M I N G

88 COMPUTING IN SCIENCE & ENGINEERING

Submissions: Send one PDF copy of articles and/or proposals to Norman Chonacky, Editor in Chief, norman.chonacky@yale.edu. Submissions should not

exceed 6,000 words and 15 references. All submissions are subject to editing for clarity, style, and space.

Editorial: Unless otherwise stated, bylined articles and departments, as well as product and service descriptions, reflect the author’s or firm’s opinion.

Inclusion in CiSE does not necessarily constitute endorsement by the IEEE, the AIP, or the IEEE Computer Society.

Circulation: Computing in Science & Engineering (ISSN 1521-9615) is published bimonthly by the AIP and the IEEE Computer Society. IEEE Headquarters,

Three Park Ave., 17th Floor, New York, NY 10016-5997; IEEE Computer Society Publications Office, 10662 Los Vaqueros Circle, PO Box 3014, Los Alamitos, CA

90720-1314, phone +1 714 821 8380; IEEE Computer Society Headquarters, 1730 Massachusetts Ave. NW, Washington, DC 20036-1903; AIP Circulation and

Fulfillment Department, 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502. Annual subscription rates for 2005: $42 for Computer Society members

(print only) and $42 for AIP society members (print plus online). For more information on other subscription prices, see www.computer.org/subscribe or

https://www.aip.org/forms/journal_catalog/order_form_fs.html. Computer Society back issues cost $20 for members, $96 for nonmembers; AIP back issues

cost $22 for members.

Postmaster: Send undelivered copies and address changes to Computing in Science & Engineering, 445 Hoes Ln., Piscataway, NJ 08855. Periodicals postage

paid at New York, NY, and at additional mailing offices. Canadian GST #125634188. Canada Post Corporation (Canadian distribution) publications mail

agreement number 40013885. Return undeliverable Canadian addresses to PO Box 122, Niagara Falls, ON L2E 6S8 Canada. Printed in the USA.

Copyright & reprint permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of US copyright

law for private use of patrons those articles that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through

the Copyright Clearance Center, 222 Rosewood Dr., Danvers, MA 01923. For other copying, reprint, or republication permission, write to Copyright and

Permissions Dept., IEEE Publications Administration, 445 Hoes Ln., PO Box 1331, Piscataway, NJ 08855-1331. Copyright © 2005 by the Institute of Electrical

and Electronics Engineers Inc. All rights reserved.

