
Grexmk: Speeding Up Scripted Builds

Glenn Ammons
IBM T. J. Watson Research Center

19 Skyline Drive
Hawthorne, New York, USA

ammons@us.ibm.com

ABSTRACT
Slow builds can be extremely costly; for example, one of our
customers loses forty percent of their developers’ produc-
tivity to waiting on builds. Build avoidance—building only
what must be built to integrate a change—solves the prob-
lem but makes the build unreliable unless the build script
captures all dependences of build outputs on sources. There-
fore, in practice, integrating even a minor change often re-
quires rebuilding a large software system from scratch.

Our solution can be summarized as “trust but verify”. Ex-
ploiting the fact that large software systems tend to be com-
posed of loosely coupled parts, we semi-automatically divide
a large, all-or-nothing build into many small “mini-builds”,
without changing the original build. Each mini-build de-
clares its dependences, which are trusted while scheduling
mini-builds to integrate a change but verified by executing
each mini-build in a sandbox in which only its declared de-
pendences are available.

We implemented these ideas in a tool suite called Grexmk
and applied Grexmk to two large all-or-nothing builds. On
the first build, we demonstrated linear speedups to six build
machines. On the second build, we sped up the average time
for an incremental build by a factor of 1.2.

Categories and Subject Descriptors: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement—
restructuring, reverse engineering, and reengineering; D.3.2
[Programming Languages]: Language Classifications—Make,
specialized application languages

General Terms: Languages, Performance, Reliability, Ver-
ification

Keywords: build avoidance, dynamic analysis, sandboxing

1. INTRODUCTION
Slow builds can be extremely costly; for example, one of

our customers loses forty percent of their developers’ produc-
tivity to waiting on builds. Build avoidance—building only
what must be built to integrate a change, as in Make [5]—

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WODA ’06, May 23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

solves the problem but makes the build unreliable unless
the build script captures all dependences of output files on
source files. Therefore, in practice, integrating even a minor
change often requires rebuilding a large software application
from scratch.

Slow builds hurt projects in ways beyond merely forcing
developers to wait. On many projects developers cannot test
their own changes because the build is too slow for them to
run it themselves. Slow builds also limit the usefulness of
testing and debugging tools, which cannot run without a
known good build.

Nonetheless, a large software project’s build, no matter
how slow it is, is too important to break, because developers,
testers, and even software architects depend on access to up-
to-date builds. As a result, development groups fear making
large changes to their builds.

This paper describes Grexmk, a tool suite for speeding up
scripted, all-or-nothing builds. Grexmk contains tools for
dividing large builds into mini-builds and tools for execut-
ing mini-builds in parallel and incrementally. Importantly,
using Grexmk requires neither abandoning the original build
nor changing it significantly.

A mini-build is an all-or-nothing build that explicitly lists
its output files, its source files, its dependences on other
mini-builds, and its build script. Developers either define
mini-builds by hand or use Grexmk’s tools. The tools ex-
ploit the fact that large build scripts tend to be composed of
loosely coupled parts. For example, scripts for IBM’s Wsbld
build tool, which is an extension of Ant [1], explicitly declare
components; for these scripts, a developer could use a tool
that automatically translates components into mini-builds.
If the build script were less transparent, the developer could
use another tool, which generates mini-builds by dynami-
cally analyzing a trace of the original build’s file accesses.

Grexmk executes each mini-build in a restricted environ-
ment in which only the mini-build’s declared dependences
are available. The slogan is “trust but verify”—if a set
of mini-builds cannot be safely executed incrementally or
in parallel, a dynamic analysis ensures that the sandboxed
build fails instead of producing an unreliable result.

This paper makes these contributions:

• A novel method for executing all-or-nothing builds in-
crementally and/or in parallel. We do not require sig-
nificant changes to the original build, which makes our
method easier for development groups to adopt.

• A novel method for semi-automatically dividing an all-
or-nothing build into mini-builds, by dynamically an-
alyzing a trace of the original build’s file accesses.

81

• Demonstrations that two large, all-or-nothing builds
are composed of loosely coupled parts, which can be
separated easily into mini-builds.

The outline of this paper is as follows. Section 2 reviews
Make-based builds and motivates our approach to translat-
ing all-or-nothing builds into builds that can execute incre-
mentally or in parallel. Section 3 defines mini-builds and
explains how Grexmk executes them. Section 4 describes
two techniques for extracting mini-builds from an all-or-
nothing build. Section 5 evaluates Grexmk on two large,
all-or-nothing builds. Section 6 reviews related work.

2. BACKGROUND
The goal of this work is to translate all-or-nothing builds

into mini-builds that can execute incrementally or in paral-
lel. This section explains what it means for a build to be able
to execute incrementally or in parallel, by reference to “safe”
Make-based builds as formalized by Niels Jørgensen [6]. To
motivate our work, we use Jørgensen’s insights into when
incremental builds are safe to explain why all-or-nothing
builds are so prevalent.

Jørgensen’s main result is a theorem that says, in part,

If all rules in a well-formed Makefile are com-
plete, fair, and sound, then the following kinds
of changes are safely integrated by incremental
builds:

• Removing a target file.

• Modifying a source file.

We need informal definitions of the key ideas in this theo-
rem. In Jørgensen’s paper, a rule is of the form Ts : Ds ;C ,
where Ts is a list of targets (usually build outputs) derived
by the rule, Ds is a list of files on which the rule depends,
and C is a build command. In Make, only the state of the
filesystem matters, so Jørgensen regards build commands as
black boxes that alter the filesystem.

A well-formed Makefile is a set of rules in which no two
rules share a target and there are no cycles of dependent
rules. A rule Ts : Ds;C is complete iff every target or source
file that is read by C is in Ds , the rule is fair iff C updates no
target that is not in Ts , and the rule is sound iff C updates
every target in Ts.

Jørgensen’s full theorem also characterizes changes to the
Makefile that can be safely integrated, but such changes are
not important in this paper. Finally, we assume in this
paper that any parallel build is equivalent to some valid
sequential build (that is, sequential consistency). With this
assumption, Jørgensen’s results apply to parallel builds, too.

2.1 How all-or-nothing builds arise
We assert that all-or-nothing builds occur whenever the

equivalent of a Makefile that meets Jørgensen’s conditions
is missing. This happens for many reasons. For example,
large Make-based builds often divide the build into more
manageable parts by invoking Make recursively. As Peter
Miller explains [10], this practice leads to incomplete rules,
among other problems.

The build problem is acute for Java projects and, espe-
cially, for complex Java projects with builds based on the
Ant [1] tool. Slow builds of this sort motivated this work
and, so far, are the only builds to which we have applied
Grexmk. The rest of this section examines these builds.

2.1.1 Building Java programs
Make is rarely used to build Java programs. One reason

is performance. Initializing a Java virtual machine (JVM) is
time-consuming and a straightforward Makefile would start
a JVM for every rule that invokes the Java compiler. This
problem can be avoided (see Section 3.2).

A more important reason is correctness. Writing correct
Makefiles for Java programs is difficult without an imple-
mentation of Make that supports multiple-target rules and
few implementations support such rules 1.

Makefiles for Java programs require multiple target rules
for two reasons. First, compiling a Java source file may
produce more than one class file; all of these class files must
be targets of the rule whose build command compiles the
source file, or else the rule is unfair. Second, class files can
depend on other class files, and the dependence graph over
class files can contain cycles. All classes involved in a cycle
must be build outputs of the same rule because well-formed
Makefiles do not contain cycles.

2.1.2 Ant-based builds
The preceding section argued that typical Make imple-

mentations are unsuitable for building Java programs. For
small and simple Java projects, the Java compiler’s built-in
dependence analysis suffices. However, many projects have
more complicated requirements, including building archives,
running other compilers, predeploying web applications to
an application server, and running regression tests.

The most popular build tool for these projects is Ant [1].
Ant buildfiles define “targets” instead of rules. Each target
has a name, a list of targets on which it depends, and a list
of “tasks”, which correspond to build commands in Make.
In Ant, targets are not associated with files. Instead, Ant
targets are similar to “phony targets” in Make: when Ant is
invoked with a list of targets to execute, Ant executes each
target reachable from the targets in the list in reverse topo-
logical order. Consider this example from the Ant manual:

<target name="A"/>

<target name="B" depends="A"/>

<target name="C" depends="B"/>

<target name="D" depends="C,B,A"/>

When the user tells Ant to run target D, Ant executes A, B,
C, and D, in that order, independent of the filesystem’s state.

In general, Ant builds cannot run incrementally or in par-
allel. Ant does define tasks that support incrementality in
an ad-hoc fashion. For example, Ant relies on the Java com-
piler to rebuild class files only when necessary. It is difficult
to tell when a buildfile constructed from such ad-hoc tasks
permits incremental rebuilds.

2.2 Summary
This section presented the requirements on build systems

that aim to build programs incrementally or in parallel and
argued that the usual solution, Make, is unsuitable for build-
ing Java programs, especially with tools based on Ant. The
next section defines mini-builds, which are our approach
to bridging the gap between scripted builds, including Ant
builds, and Make.

1An exception is Clearmake [11]. GNU Make [12] supports
multiple targets only in pattern rules; as in most Make
implementations, other “multiple target” rules are merely
shorthand for several single-target rules.

82

#!/bin/sh

echo -n scoo > scoo.txt

echo -n doo > doo.txt

echo -n by > by.txt

cat scoo.txt by.txt > scooby.txt

cat doo.txt by.txt > dooby.txt

cat scooby.txt dooby.txt doo.txt > scoobydoobydoo.txt

Figure 1: A silly Bourne shell build script.

control:

Mini-Build: scooby

Build-Depends: scoo, by

Build-Script:

�#!/bin/sh

�cat scoo.txt by.txt > scooby.txt

sources:

outputs:

scooby.txt

Figure 2: A mini-build specification for the com-
mand that creates scooby.txt in Figure 1.

3. MINI-BUILDS AND MINI-BUILD
EXECUTION

This section defines mini-builds and explains how to exe-
cute them by translating them into Makefiles.

3.1 Mini-builds
A Grexmk build is defined by a set of mini-build specifica-

tions. A mini-build specification is a directory that contains
three files:

control The name, dependences, and build script of the
mini-build, formatted to follow this template:

Mini-Build: mini-build-name
Build-Depends: mini-build-name*
Build-Script:

�line0
. . .
�lineN

outputs A list of the files that the mini-build exports to
other mini-builds, with one file per line.

sources A list of the mini-build’s source files.

By convention, a grexmk directory at the root of the pro-
gram’s source tree lists all mini-build specifications.

As an example, consider the Bourne shell [7] build script
in Figure 1. If one were to create a mini-build for each
command in the script, then the mini-build specification for
the command that creates scooby.txt might be as indicated
in Figure 2. Note that the mini-build has no sources.

Also note that the mini-build’s build script is almost ex-
actly the same as the original command in Figure 1. In gen-
eral, when creating mini-builds for an all-or-nothing build,
it is important to minimize changes to the original build.
Section 4 discusses mini-build creation in detail.

Finally, Jørgensen’s results about incremental Make carry
over to mini-builds. Each mini-build specification corre-
sponds to a rule. The specification’s sources and build-
dependences determine the dependences of the rule, the
specification’s outputs are the targets of the rule, and the
specification’s build script is the rule’s build command. A
set of mini-build specifications is well-formed if the corre-
sponding Makefile is well-formed. Thus, Jørgensen’s main
result can be restated for mini-builds this way:

If all mini-build specifications that make up a
well-formed build are complete, fair, and sound,
then the following kinds of changes are safely in-
tegrated by incremental builds:

• Removing an output file.

• Modifying a source file.

3.2 Mini-build execution
Grexmk executes mini-builds by translating them into

Makefiles and building them with Make. Like other well-
constructed Make-based builds, the builds that Grexmk gen-
erates can be executed incrementally and in parallel. This
paper makes no contributions to the technology underlying
incremental and parallel execution of Make-based builds.

Our novel contribution is the use of sandboxing to detect
or avoid unsafe builds dynamically. Each mini-build runs
in a restricted environment (the sandbox) in which only the
source and output files of its dependences are available ini-
tially, instead of running in the master build tree as is the
traditional practice. When the build script completes, only
its output files are propagated to the build tree.

Sandboxing detects incomplete mini-builds because build
scripts with undeclared dependences will fail. Sandboxing
eliminates unfair mini-builds because only declared outputs
propagate to other mini-builds and to the build tree. Finally,
sandboxing detects unsound mini-builds because, if all mini-
build specifications are well-formed (a static property), then
any declared output that exists after a build script completes
must have been created by the script; if an output does
not exist, that fact is detected when Grexmk attempts to
propagate it to the build tree.

We have experimented with two methods of sandbox con-
struction. The first method relies on a central repository of
source and output packages, implemented using the Debian
Linux distribution’s package management tools [3]. For each
mini-build (in fact, each version of each mini-build specifica-
tion and its source files), the repository holds a source pack-
age and, if the mini-build has executed, an output package.

To execute a mini-build on a build machine, Grexmk re-
trieves the mini-build’s source package from the repository
and unpacks it in an empty, local directory (the sandbox);
retrieves the output packages of each build dependence from
the repository and unpacks them in the sandbox; executes
the build script; if the build script succeeds, creates a new
output package and uploads it to the repository; and de-
stroys the sandbox.

To execute a parallel build, Grexmk generates a Makefile
that submits mini-builds to the OpenPBS batch job sched-
uler [15], which runs them on a cluster of build machines.

The repository is a bottleneck with this method, which
is mitigated by optimizations that are implemented by the
Debian tools. In particular, each build machine caches pack-
ages that have already been retrieved from the repository.

83

In the second method, sandboxes are populated by cre-
ating symbolic links to the master build tree instead of by
unpacking packages. This method requires that the master
build tree be accessible to each build machine, presumably
via a network file system. We used this method on a cus-
tomer’s build; because of licensing restrictions on OpenPBS,
we do not evaluate the performance of this method on par-
allell builds in Section 5.

Finally, Section 2 remarked that a straightforward Make-
file for Java would start a JVM for every rule that invokes
the Java compiler, which would be slow. With both sand-
boxing methods, our implementation uses Mark Lindner’s
Jolt [9] to avoid that overhead. Jolt is a JVM daemon that
allows multiple build scripts to reuse a JVM.

4. CREATING MINI-BUILDS
This section describes Grexmk’s tools for dividing all-

or-nothing builds into mini-builds. Sometimes, a build’s
specification permits a direct translation into mini-builds;
Grexmk includes a tool that translates specifications for Ws-
bld (IBM’s Ant-based build tool) into mini-builds. To han-
dle more difficult builds, Grexmk uses a dynamic analysis
to create mini-builds from a user-written specification and
a trace of a build’s file accesses.

4.1 Creating mini-builds from another
specification

Many builds are composed of smaller parts (“projects”,
“components”, or “modules”), where the build lists specifi-
cations of the parts and the supposed dependences between
them. Sometimes, these specifications can be translated au-
tomatically into mini-build specifications.

For example, builds that use IBM’s Wsbld build tool are
made up of components. A component is defined by two
XML files: component.xml describes how the component
fits into the overall build, including a list of its outputs and
dependences on other components; build.xml contains the
component’s build script, in a format that extends the for-
mat of Ant buildfiles.

Grexmk includes a simple program that translates Wsbld
component specifications into mini-builds. The mini-builds
are faithful to the original component specifications; in fact,
each mini-build’s build script invokes the build commands
in the corresponding build.xml file. An important conse-
quence is that the Grexmk build is faithful to the original
build, except that the Grexmk build uses sandboxes to de-
tect errors that prevent incremental and/or parallel builds.
Section 5 presents our experience in building a large Wsbld-
based build with Grexmk.

4.2 Creating mini-builds from a trace
This section describes a Grexmk tool, DivideTrace, for

creating mini-builds when the original build lacks an ade-
quate specification of its parts. DivideTrace is a dynamic
analysis that takes two inputs: a trace and a user-written
division specification.

The first input is a trace of one sequential execution of
an all-or-nothing build. One trace is adequate because, by
design, builds are repeatable. The trace interleaves a trace
of the build’s commands with a trace of their interactions
with the file system. That is, we assume that all of the
effects that matter are recorded in the file system, which is
a reasonable assumption for most builds.

ignore:

start-line: 0

stop-regexp: /Building/

multibracketed:

name: start.$1

start-regexp: /Building (.*)/

stop-regexp: /Done building/

export-regexp: /scoobydoobydoo.txt/

Figure 3: Division specification for Figure 1’s build.

Most build tools can be configured to print a trace of the
commands that they execute. If not, the build can be an-
notated to print the appropriate output. For example, echo
statements could be inserted before and after each command
in the build in Figure 1:

. . .
echo "Building scooby.txt"

cat scoo.txt by.txt > scooby.txt

echo "Done building scooby.txt"

. . .

Grexmk uses the Strace [13] system-call tracer to capture
the interactions of build commands with the file system. The
output of Strace is reduced to file accesses (namely, reads
and writes) and interleaved with the build command trace
to form a single trace. For example, here is part of the trace
generated by the build in Figure 1:

. . .
Building scooby.txt

read(scoo.txt)

read(by.txt)

write(scooby.txt)

Done building scooby.txt

. . .

The second input to DivideTrace is a user-written division
specification. The division specification tells DivideTrace
how to divide a trace of the entire execution into a sequence
of traces of mini-build “executions”. We require this input
from the user because

1. Automatically inferring mini-build scripts is impos-
sible when build scripts are programs in a general-
purpose programming language such as Ant.

2. Mini-build scripts must be simple, because the original
build is too important to break and because develop-
ers will not be confident that complicated scripts are
correct. Often, with an appropriate division, the mini-
build scripts are just “calls” into the original build
script; by contrast, a bad division might require rewrit-
ing portions of the original script.

3. An automatic division must be overly conservative be-
cause, in principle, values from one interval of the trace
could affect a following interval without going through
the file system.

Figure 3 shows pseudocode for a division specification of
the build in Figure 1 2. The specification contains two decla-
rations. The first declaration instructs DivideTrace to ignore

2In our implementation, there is no concrete syntax for di-

84

all file accesses from the beginning of the trace up to the first
line that contains "Building". The second declaration tells
DivideTrace to create a mini-build for each trace interval
that begins with a line that matches the regular expression
"Building (.*)" and ends just before a line that contains
"Done building". The name of the mini-build will be the
substring of the first line that matched (.*) in the regular
expression.

In general, a specification is a list of declarations. Each
declaration is of one of four kinds: a bracketed declaration
matches at most one trace interval, where a match cor-
responds to one mini-build; a multi-bracketed declaration
matches zero, one, or more intervals, where each match cor-
responds to a mini-build; an ignore declaration matches in-
tervals that ought to be ignored; and a prebuilt declaration
matches no intervals and corresponds to a mini-build with
a trivial build script.

Each declaration has a list of properties (that is, name-
value pairs). Table 1 lists the most commonly used prop-
erties, their meanings, and the declarations in which each
property is allowed.

Given a specification and a trace, DivideTrace evaluates
the specification on the trace as follows:

Divide the trace In one pass, DivideTrace splits the trace
into disjoint intervals and assigns each file access to its
enclosing interval. Accesses that belong to intervals
that match ignored declarations are discarded. Every
interval is matched to exactly one declaration. Inter-
vals that match bracketed and multi-bracketed decla-
rations are assigned names by evaluating the value of
their name property; the expression can inspect the
text of the interval, in order to construct different
names for multi-bracketed declarations.

DivideTrace reports an error if the trace cannot be di-
vided unambiguously into intervals; if intervals cannot
be matched unambiguously to declarations; if any file
access lies outside of all intervals; or if names collide
between two intervals, between two prebuilt declara-
tions, or between an interval and a prebuilt declara-
tion.

Assign files Every accessed file is assigned either to an in-
terval or to a prebuilt declaration.

A file F belongs to a prebuilt declaration P iff F is in
the outputs list of P.

Otherwise, F belongs to an interval I iff F is written
only in I and not read before it is written, or F is never
written and read only in I.

DivideTrace reports an error if a file cannot be as-
signed, if a file could be assigned to more than one in-
terval or prebuilt declaration, or if a file that belongs
to a prebuilt declaration is written.

Categorize files Every assigned file is categorized as a pre-
built file, a source file, an output file, or a temporary
file.

A file F is a prebuilt file iff F belongs to a prebuilt
declaration.

Otherwise:

vision specifications; instead, the developer writes Perl [16]
programs that construct abstract syntax trees and invoke
the DivideTrace evaluator.

• F is a source file iff F is never written.

• F is an output file iff F is written within its inter-
val; and F is read after its interval, or F matches
the output-regexp of its interval’s declaration.

• Otherwise, F is a temporary file.

Note that every assigned file is categorized. Divide-
Trace reports an error if any interval lacks output files
or if any prebuilt declaration lacks prebuilt files.

Stop or create mini-builds If any errors were reported,
DivideTrace stops. Otherwise, DivideTrace creates a
mini-build specification for each interval and prebuilt
declaration, with these specification files:

control The Mini-Build field is the name of the in-
terval or prebuilt declaration.

For prebuilt declarations, the Build-Depends field
is empty. For an interval I, the name N is added
to I’s Build-Depends field iff I reads a file that
belongs to J and J is named N.

If an interval’s declaration has a build-script

property, the Build-Script field is the result of
evaluating the property’s expression; as with name

properties, the expression can inspect the text of
the interval.

outputs For intervals, all output files; for prebuilt dec-
larations, all prebuilt files.

sources For intervals, all source files; for prebuilt dec-
larations, all prebuilt files.

The resulting mini-builds are not guaranteed to be equiv-
alent to the original build. However, Grexmk guarantees
(via sandboxing and Jørgensen’s results for Make) that all
executions of the mini-builds (incremental, parallel, or se-
quential) are equivalent. That is, the developer only needs
to satisfy himself that some dependence-respecting execu-
tion of all mini-builds is correct.

5. EVALUATION
This section evaluates Grexmk on two large, all-or-nothing

builds. Most experiments were run on a machine with 1GB
of RAM and a single 1.66GHz Intel Pentium 4 processor,
running Debian Linux. Parallel builds were run on up to six
machines, where three machines were “slow” and three were
“fast”. Fast machines have 1.66GHz Intel Pentium 4 proces-
sors, between 1GB and 2GB of RAM, and a fast connection
to the repository (11MB/s over http, 0.2ms pings); slow ma-
chines have 0.9GHz to 1.66GHz Intel Pentium 4 processors,
between 250MB and 1GB of RAM, and a slow connection
to the repository (3.5MB/s over http, 10ms pings).

5.1 IBM product build
This build is a subset of a Wsbld-based IBM product

build 3. The subset consists of over 1GB of source divided
among 510 components and the original, all-or-nothing build
completes in 124 minutes. There are two kinds of compo-
nents in the build: binary components are precompiled pre-
requisites with trivial build scripts, while source components
contain the product’s source code and have non-trivial build

3The full build runs only on Windows, but Grexmk does not
run on Windows

85

Property Meaning Allowed in
start-line N Begin an interval at line number N of the trace. bracketed, multi-bracketed, ignore

stop-line N End a interval at line number N - 1 of the trace. bracketed, multi-bracketed, ignore

start-regexp R Begin each interval at every line that matches R. bracketed, multi-bracketed, ignore

stop-regexp R If a interval has begun for this declaration, end the
interval just before the next line that matches R.

bracketed, multi-bracketed, ignore

name E For each interval, E evaluates to the name of the cor-
responding mini-build.

bracketed, multi-bracketed, prebuilt

build-script E For each interval, E evaluates to the build script of the
corresponding mini-build.

bracketed, multi-bracketed

output-regexp R For each interval, files in the interval that match R are
outputs of the corresponding mini-build.

bracketed, multi-bracketed

outputs FS The files FS are outputs of the prebuilt mini-build. prebuilt

Table 1: Properties of division-specification declarations.

Build machines Time (minutes) Speedup
No Grexmk, one fast 124 1.0
One fast 167 .75
Three fast 59 2.1
Three slow 83 1.5
All six 37 3.4

Table 2: Execution times and speedups for build-
ing the IBM product in parallel with Grexmk. The
first paragraph of this section describes “fast” and
“slow” machines.

Build machines Machine-minutes
Build Validation Overhead

One fast 124 13 29
Three fast 129 20 27
Three slow 167 45 37
All six 145 31 44

Table 3: Machine times for Grexmk builds, divided
into build, validation, and overhead time.

scripts. There are 140 binary components, whose “source”
size totals 691MB; the remaining 352MB of source is divided
among 370 source components.

To apply Grexmk, we defined one mini-build to hold all
of the Wsbld component specifications and automatically
translated each Wsbld component specification into a mini-
build specification, for a total of 511 mini-builds. By ex-
ecuting the mini-builds in a sandbox, we found one error
in the original build: one Wsbld specification was missing
a dependence. Note that we fixed the error before running
the experiments described here.

Table 2 shows execution times and speedups for the origi-
nal build and for four Grexmk builds that used the package-
based execution method of Section 3.2. Grexmk’s sequential
overhead is 25%, but Grexmk scales well: the speedup from
one fast machine to three fast machines is 2.1/.75 = 2.8, or
almost linear; also, the speedup on all six machines is 3.4,
compared to a linear speedup of 2.1 + 1.5 = 3.6.

Table 3 divides the machine-time (in machine-minutes)
spent in each Grexmk configuration into build, validation,
and overhead time. Build time is the machine-time spent
running Wsbld. Validation time is the machine-time spent
setting up sandboxes; validation time could be eliminated at
the expense of safety. Finally, overhead time is the machine-

Kind Time (minutes)
Original, full 11.7
Grexmk, full 21.4
Grexmk, full, no sandbox 15.8
Incremental m = 9.5, s = 5.72
Incremental, no sandbox m = 4.2, s = .97

Table 4: Execution times for the customer’s build
in various setups. For incremental builds, the table
reports the mean and standard deviation over forty-
one runs (see the text).

time spent scheduling jobs, transferring files over the net-
work, and so forth. The data shows that building paral-
lelizes almost perfectly, while validation and overhead rise
only slightly as the number of build machines increases; for
example, if validation and overhead parallelized perfectly,
their combined machine-time on all six machines would be
65 minutes, while the actual time was 75 minutes.

5.2 Customer build
This is a customer’s build, scripted with Ant. The orig-

inal, all-or-nothing build completes in 11.7 minutes. Al-
though this build is significantly faster than the IBM build,
the customer executes thousands of builds per week and es-
timates that developers spend forty percent of their time
waiting on builds. Like the IBM build, the customer’s build
is divided between binary prerequisites and source code: the
build has 1445 files of binary prerequisites, whose size totals
191MB, and 29893 files of source code, whose size totals
429MB.

We used DivideTrace to divide this build into 414 mini-
builds. Our division specification was 384 lines of Perl code,
including whitespace. Many of these lines were devoted to
lists of directories in the original build: we listed 57 direc-
tories of precompiled prerequisites and 119 lines of other
projects, one per line, for a total of 176 lines.

Table 4 lists execution times for several variations of the
customer’s build. All builds were run on one “fast” machine,
with sandboxes built with symbolic links, as described in
Section 3.2. For incremental builds, a list of forty files was
randomly generated and the build was repeated forty-one
times, changing one file from the list between each build.
This estimates the time to integrate a developer’s change,
assuming that all source files are equally likely to change.

The original build is well-tuned and runs almost twice as

86

fast as a full build with Grexmk, whose overhead is mostly
due to sandboxing. On average, Grexmk achieves a speedup
of 1.2 on incremental builds. One problem is that the end
of the build gathers output files from many mini-builds into
one large archive. This step takes about four minutes in
the original build; if this bottleneck is ignored, incremental
builds achieve a speedup of about 1.4; more importantly,
optimizing the bottleneck increases the build’s parallelism.
Note that the customer’s product is installed by unpacking
this archive.

6. RELATED WORK
Make [5] was the first tool to speed up builds via build

avoidance. Make requires a Makefile, which declares which
output files depend on which source files and describes how
to build output files from source files. Essentially, Section 4
describes two techniques for generating Makefiles from all-
or-nothing, scripted builds.

Merijn de Jonge has proposed another technique [2] for
dividing large builds into components. However, his tech-
nique assumes that every component corresponds to a sub-
tree of the original source tree and only works if the original
build script is written in a special language. In our expe-
rience, customers are reluctant to rewrite their builds to
attain speedups. In particular, de Jonge’s technique does
not apply to the builds discussed in Section 5.

Grexmk detects missing dependence declarations by run-
ning each mini-build’s script in a sandbox, in which only
the declared dependences are available. Electric Cloud [4],
a Make variant for executing builds in parallel, and Clear-
Make, a Make variant included with the ClearCase [11] con-
figuration manager, also detect missing dependences. While
Grexmk’s sandboxes are simply directory trees in a normal
file system, Electric Cloud and ClearMake use special file
systems to implement dependence-detection. Another dif-
ference is that missing declarations result in a failed build
in Grexmk, while ClearMake and Electric Cloud can repair
the build by executing (or reexecuting) build scripts in an
order that obeys true dependences.

Our approach assumes that the original build is difficult
to analyze statically. By contrast, smart recompilation [14]
analyzes the program statically to reduce the amount of code
that must be recompiled to integrate a change. Giovanni
Lagorio’s doctoral dissertation [8] explains some of the issues
in applying this sort of approach to Java.

In the experiments in Section 5, the original build scripts
were written in Ant [1] or a derivative of Ant. Grexmk
also applies to build scripts written in other languages. For
example, as Peter Miller explains [10], invoking Make re-
cursively can cause all-or-nothing builds. Grexmk could be
used to divide recursive Make-based builds into mini-builds.

7. CONCLUSION AND OPEN QUESTIONS
Grexmk is a tool suite for reengineering all-or-nothing

builds so that they can be executed incrementally or in par-
allel. The suite uses one dynamic analysis to divide a build
into mini-builds and another dynamic analysis to verify that
a set of mini-builds executes safely. We showed that this
technique works well on two real-world builds, but questions
remain.

The larger goal of this work was to make it easier for de-
velopers to change large programs, but slow builds are not

the only obstacles to integrating changes. A change is not
fully integrated until the program is deployed, configured,
and tested with the change. Suppose that these phases,
as written, are also too slow—can they be reengineered to
avoid deploying, configuring, and testing parts of the pro-
gram that are unaffected by a change? What analyses would
be necessary?

To use DivideTrace (see Section 4.2), the developer must
write a division specification. With better analyses, could
this work be avoided for common cases?

Finally, we believe that mini-builds are easier to main-
tain and optimize than are monolithic builds; will experience
prove us right?

8. ACKNOWLEDGEMENTS
Chet Murthy and Robert Yates made significant contri-

butions to this work.

9. REFERENCES
[1] Apache Ant 1.6.5 manual.

http://ant.apache.org/manual.

[2] M. de Jonge. Decoupling source trees into build-level
components. In J. Bosch and C. Krueger, editors,
Proceedings of the Eighth International Conference on
Software Reuse, volume 3107 of LNCS, pages 215–231.
Springer-Verlag, July 2004.

[3] Debian—the universal operating system.
http://www.debian.org.

[4] Electric Cloud. http://www.electric-cloud.com.

[5] S. I. Feldman. Make—A program for maintaining
computer programs. Software—Practice and
Experience, 9(4):255–265, Apr. 1979.

[6] N. Jørgensen. Safeness of Make-based incremental
recompilation. In FME ’02: Proceedings of the
International Symposium of Formal Methods Europe
on Formal Methods - Getting IT Right, pages 126–145,
London, UK, 2002. Springer-Verlag.

[7] B. W. Kernighan and R. Pike. The Unix Programming
Environment. Prentice Hall, Inc., 1984.

[8] G. Lagorio. Type systems for Java separate
compilation and selective recompilation. PhD thesis,
DISI, University of Genoa, Mar. 2004.

[9] M. Lindner. Jolt.
http://www.hyperrealm.com/main.php?s=jolt.

[10] P. Miller. Recursive Make considered harmful.
AUUGN Journal of AUUG, Inc., 19(1):14–25, 1998.

[11] Rational ClearCase.
http://www.ibm.com/software/awdtools/clearcase.

[12] R. M. Stallman, R. McGrath, and P. D. Smith. GNU
Make: A program for directing recompilation, for
version 3.81. Free Software Foundation, June 2004.

[13] Strace, version 4.5.8.
http://www.liacs.nl/~wichert/strace/.

[14] W. F. Tichy. Smart recompilation. ACM Transactions
on Programming Languages and Systems,
8(3):273–291, July 1986.

[15] Veridian Information Solutions Inc. Portable Batch
System Administrator Guide, Release: OpenPBS 2.3,
2000.

[16] L. Wall, T. Christansen, and J. Orwant. Programming
Perl. O’Reilly and Associates, third edition, 2000.

87

