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University of Toronto (2000–2004)

• Courses in compilers, OS, formal methods, AI, machine learning

• NSERC scholarship: Ontario Cancer Institute (2002, 2003)

• DNA microarray image analysis software—lives on GNU

Savannah
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Grad school
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University of Waterloo (2004–)

• Courses in text databases, generative programming, software

evolution, software architecture

• Studied architecture of Mozilla (2.5 mLOC)

• Published paper at ICSM 2005: A reference architecture for web

browsers

• Focued interest on build issues
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Problem: Building large systems correctly

• Single OS, single language, minimal config options isn’t too bad

• Gets difficult when you add more platforms, languages,

configuration options

• Mozilla: 4-5 languages, 7-8 OS, 130 config options

• War story: I’ve been told by someone who spent some time at

Sun that there was a period of time (a few months) during which

they couldn’t build Solaris :)
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Harder problem: Correct rebuilds

• Small changes shouldn’t mean long build times

• Slow turnaround, wasted productivity

• Nobody really trusts the correctness rebuilds—tinderbox,

buildbot, etc. typically perform clean builds

• Compiler caches (ccache) help
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Typical approach

• Environment configuration

• Build complete dependency tree

• Expand macros, etc.

• Recurively build targets top-down
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Problem: “implicit dependencies”

• Engineers don’t want to have to explicitly state which headers

each object file depends on

• “scanners” can scan source files and output included headers

• Typically run before starting the build

• Problems with generated headers (perhaps created using other

targets)

• Due to conditional compilation, it’s most reliable to use the

compiler to figure this information—depends on CFLAGS
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Problem: configuration information has

dependencies

• One solution: hard-code the order of checks

• Cache previous results

• Slow to re-run configure if you just want to change one

option
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A different approach: redo

• Conceived by D. J. Bernstein at UIC

• One dependency tree that is constructed dynamically

• “builders”, “configure tests” are nodes like everything else

• Avoid big up-front cost if you only want to rebuild a small part

• Dependencies are embedded in the construction commands

• Keeps state, uses suffix matching

• I’m writing a prototype in Bourne shell script
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Basic redo example

bar.do might say:

redo-ifchange foo

tr x y < foo

Analagous to:

bar: foo

tr x y < foo > bar

But as safe as:

bar: foo

tr x y < foo > bar---redoing

fsync bar---redoing

mv bar---redoing bar
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How redo works: targets and sources

• When asked to create a file it hasn’t heard of before, presume

the file is a source if it exists, target otherwise

• For latter, immediately save decision to disk so that subsequent

creation of target doesn’t change decision
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redo example: dynamic prerequisites

default.o.do might say:

redo-ifchange compile "$2.c" "$2.o.deps"

redo-ifchange ‘cat "$2.o.deps"‘

./compile "$2.c" "$3"
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How redo works: prerequisites

• After building a target, save prerequisites in .redo

• Next run looks at .redo and can quickly figure out whether

target is up to date

• For latter, immediately save decision to disk so that subsequent

creation of target doesn’t change decision
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redo example: dynamic prerequisites

compile.do might say:

redo-ifchange warn-auto.sh conf-cc

cat warn-auto.sh

echo exec "‘head -1 conf-cc‘" \

’-c "$1" -o "$2"’

chmod 755 $3

And conf-cc might say:

gcc -g -O2 -Isrc
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redo example: dynamic prerequisites

default.deps.do might say:

redo-ifchange ccdepfind "$2.c"

./ccdepfind "$2.c"

And ccdepfind.do might say:

redo-ifchange warn-auto.sh conf-cc

cat warn-auto.sh

echo exec "‘head -1 conf-cc‘" \

’-MM "$1" | cut -d" " -f2-’

chmod 755 $3
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redo example: dynamic prerequisites

compile is generated as:

#!/bin/sh

# WARNING: This file was auto-generated.

exec gcc -g -O2 -Isrc -c "$1" -o "$2"

ccdepfind is generated as:

#!/bin/sh

# WARNING: This file was auto-generated.

exec gcc -g -O2 -Isrc -MM "$1" \

| cut -d" " -f2-
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Generated headers

uint64.h.do might say:

redo-ifchange choose compile load \

tryulong64.c uint64.h1 uint64.h2

./choose clr tryulong64 uint64.h1 uint64.h2

Based on results of compiling, linking, and running tryulong,

uint64.h becomes either uint64.h1 or uint64.h2

(typedef uint64 is either long long or just long)
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Targets depend on nonexistent files

• Compile a program a program which has a line:

#include "vis.h"

• But you forget to create vis.h in the current directory

• The compiler uses /usr/include/vis.h instead

• If you create vis.h and rebuild, nothing happens.
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Targets depend on nonexistent files

redo-ifchange vis.h

means current target should be rebuilt if an existing file vis.h is

modified (or removed)

redo-ifcreate vis.h

means current target should be rebuilt if a nonexistant file vis.h

is created

• Useful for optional build parameters

• Used internally to find the right build script, e.g. file.o.do

vs. default.o.do
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Location of derived artifacts

• Also known as Objdir or VPATH

• May be possible without special support need from redo

• Choices:

– Start in separate build directory, specify sources using srcdir

– Start in source directory, specify targets using targetdir

21



Location of build scripts

• redo-ifchange looks for in the same directory as

target for the build script target.do

• Useful to store build scripts in an different directory so they can

be reused by different products

• REDO SCRIPTS environment variable (planned)
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Limitations

• Cycles aren’t be detected until midway into the build

• Separate processes for redo-ifchange results in more

overhead than separate threads

• Not clear how to allow creation of multiple targets from single

build script

• Quoting can be tricky

• Bourne shell doesn’t make Windows happy... Python?
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Build system testing

• Build tool vs. build scripts

• redo-ifchange and redo-ifcreate can be tested

individually

• Build scripts can be tested in a scaled-down sandbox
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Conclusions

• Composable mechanisms can be used to trigger appropriate

rebuilding when code and build scripts are changed

• Need to implement a build system for a large scale product

(mLOC) to get practical data on ease of maintainability and

scalability
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Questions?
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