
Reliable software rebuilding

Alan Grosskurth

Software Architecture Group (SWAG)

School of Computer Science

University of Waterloo

agrossku@uwaterloo.ca

2006.04.10

1

University of Toronto (2000–2004)

• Courses in compilers, OS, formal methods, AI, machine learning

• NSERC scholarship: Ontario Cancer Institute (2002, 2003)

• DNA microarray image analysis software—lives on GNU

Savannah

2

Grad school

3

University of Waterloo (2004–)

• Courses in text databases, generative programming, software

evolution, software architecture

• Studied architecture of Mozilla (2.5 mLOC)

• Published paper at ICSM 2005: A reference architecture for web

browsers

• Focued interest on build issues

4

Problem: Building large systems correctly

• Single OS, single language, minimal config options isn’t too bad

• Gets difficult when you add more platforms, languages,

configuration options

• Mozilla: 4-5 languages, 7-8 OS, 130 config options

• War story: I’ve been told by someone who spent some time at

Sun that there was a period of time (a few months) during which

they couldn’t build Solaris :)

5

Harder problem: Correct rebuilds

• Small changes shouldn’t mean long build times

• Slow turnaround, wasted productivity

• Nobody really trusts the correctness rebuilds—tinderbox,

buildbot, etc. typically perform clean builds

• Compiler caches (ccache) help

6

Typical approach

• Environment configuration

• Build complete dependency tree

• Expand macros, etc.

• Recurively build targets top-down

7

Problem: “implicit dependencies”

• Engineers don’t want to have to explicitly state which headers

each object file depends on

• “scanners” can scan source files and output included headers

• Typically run before starting the build

• Problems with generated headers (perhaps created using other

targets)

• Due to conditional compilation, it’s most reliable to use the

compiler to figure this information—depends on CFLAGS

8

Problem: configuration information has

dependencies

• One solution: hard-code the order of checks

• Cache previous results

• Slow to re-run configure if you just want to change one

option

9

A different approach: redo

• Conceived by D. J. Bernstein at UIC

• One dependency tree that is constructed dynamically

• “builders”, “configure tests” are nodes like everything else

• Avoid big up-front cost if you only want to rebuild a small part

• Dependencies are embedded in the construction commands

• Keeps state, uses suffix matching

• I’m writing a prototype in Bourne shell script

10

Basic redo example

bar.do might say:

redo-ifchange foo

tr x y < foo

Analagous to:

bar: foo

tr x y < foo > bar

But as safe as:

bar: foo

tr x y < foo > bar---redoing

fsync bar---redoing

mv bar---redoing bar

11

How redo works: targets and sources

• When asked to create a file it hasn’t heard of before, presume

the file is a source if it exists, target otherwise

• For latter, immediately save decision to disk so that subsequent

creation of target doesn’t change decision

12

redo example: dynamic prerequisites

default.o.do might say:

redo-ifchange compile "$2.c" "$2.o.deps"

redo-ifchange ‘cat "$2.o.deps"‘

./compile "$2.c" "$3"

13

How redo works: prerequisites

• After building a target, save prerequisites in .redo

• Next run looks at .redo and can quickly figure out whether

target is up to date

• For latter, immediately save decision to disk so that subsequent

creation of target doesn’t change decision

14

redo example: dynamic prerequisites

compile.do might say:

redo-ifchange warn-auto.sh conf-cc

cat warn-auto.sh

echo exec "‘head -1 conf-cc‘" \

’-c "$1" -o "$2"’

chmod 755 $3

And conf-cc might say:

gcc -g -O2 -Isrc

15

redo example: dynamic prerequisites

default.deps.do might say:

redo-ifchange ccdepfind "$2.c"

./ccdepfind "$2.c"

And ccdepfind.do might say:

redo-ifchange warn-auto.sh conf-cc

cat warn-auto.sh

echo exec "‘head -1 conf-cc‘" \

’-MM "$1" | cut -d" " -f2-’

chmod 755 $3

16

redo example: dynamic prerequisites

compile is generated as:

#!/bin/sh

WARNING: This file was auto-generated.

exec gcc -g -O2 -Isrc -c "$1" -o "$2"

ccdepfind is generated as:

#!/bin/sh

WARNING: This file was auto-generated.

exec gcc -g -O2 -Isrc -MM "$1" \

| cut -d" " -f2-

17

Generated headers

uint64.h.do might say:

redo-ifchange choose compile load \

tryulong64.c uint64.h1 uint64.h2

./choose clr tryulong64 uint64.h1 uint64.h2

Based on results of compiling, linking, and running tryulong,

uint64.h becomes either uint64.h1 or uint64.h2

(typedef uint64 is either long long or just long)

18

Targets depend on nonexistent files

• Compile a program a program which has a line:

#include "vis.h"

• But you forget to create vis.h in the current directory

• The compiler uses /usr/include/vis.h instead

• If you create vis.h and rebuild, nothing happens.

19

Targets depend on nonexistent files

redo-ifchange vis.h

means current target should be rebuilt if an existing file vis.h is

modified (or removed)

redo-ifcreate vis.h

means current target should be rebuilt if a nonexistant file vis.h

is created

• Useful for optional build parameters

• Used internally to find the right build script, e.g. file.o.do

vs. default.o.do

20

Location of derived artifacts

• Also known as Objdir or VPATH

• May be possible without special support need from redo

• Choices:

– Start in separate build directory, specify sources using srcdir

– Start in source directory, specify targets using targetdir

21

Location of build scripts

• redo-ifchange looks for in the same directory as

target for the build script target.do

• Useful to store build scripts in an different directory so they can

be reused by different products

• REDO SCRIPTS environment variable (planned)

22

Limitations

• Cycles aren’t be detected until midway into the build

• Separate processes for redo-ifchange results in more

overhead than separate threads

• Not clear how to allow creation of multiple targets from single

build script

• Quoting can be tricky

• Bourne shell doesn’t make Windows happy... Python?

23

Build system testing

• Build tool vs. build scripts

• redo-ifchange and redo-ifcreate can be tested

individually

• Build scripts can be tested in a scaled-down sandbox

24

Conclusions

• Composable mechanisms can be used to trigger appropriate

rebuilding when code and build scripts are changed

• Need to implement a build system for a large scale product

(mLOC) to get practical data on ease of maintainability and

scalability

25

Acknowledgements

• D. J. Bernstein for conceiving redo:

http://cr.yp.to/redo.html

26

Questions?

27

